CHAPTER 7 - ALL

Things to Know

From chapter 7All the vocabulary and notes from the sections we've covered in chapter 7
\square Memorize polyatomic ions
\square Memorize the charge/ oxidation number for groups 1,2, and 13-17
\square Memorize the formulas and names for the binary acids and oxyacids
\square Memorize numerical prefixes
\square Memorize names and formulas for common substances
\square Memorize the rules for determining oxidation numbers
\square Memorize the formula for finding percent composition
\square Memorize the formula for finding a molecular formula

From Chapter 3

\square Relative mass - definition and how to apply
\square Average atomic mass - definition and how to apply
\square Memorize Avogadro's number: 6.022×10^{23}. You can get element masses from the periodic table on the test.

From Chapter 22

\square
Types of polymers based on structure and reaction to heat
$\square \quad$ Examples of natural and synthetic polymers
\square Examples of addition and condensation polymers
\square Be able to discuss applications of the properties of polymers, for example:

- Why are some plastics recyclable?
- Why are some plastics dishwasher safe and some not?
- Why is polyester wrinkle resistant?

Things to Know How to do

Write formulas for ionic compounds ionic compounds and name them using the Stock systemWrite formulas for binary molecular compounds and name using the prefix system\square Read a chemical formula

- $6 \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ contain how many atoms or moles of Al ? S ? O ?
\square Determine oxidation numbers of each of the elements in a compound
\square Determine oxidation numbers for each of the elements in a polyatomic ion
\square Use the periodic table to determine the average atomic mass of an element
\square Calculate formula mass (amu) and molar mass (g)
\square Use a Q formula "road map" with conversion factors for these, for example:
- mass \rightarrow moles \rightarrow atoms or atoms \rightarrow moles \rightarrow mass
\square Convert moles to mass and mass to moles
- Conversion factor is molar mass, you get it off the periodic table
\square Convert moles to atoms and atoms to moles
- Conversion factor is 6.022×10^{23} atoms in one mole
\square Convert mass to atoms and atoms to mass
- Mass to moles or atoms and atoms to moles or massWork mass - moles - molecule problems
\square Calculate percent composition
\square Calculate empirical formulas
\square Calculate molecular formulas

Things You Know You Need to Practice

